
Using metaMA for differential gene expression
analysis from multiple studies

Guillemette Marot and Rémi Bruyère

Modified: January 28, 2015. Compiled: October 29, 2024

Abstract

This vignette illustrates the use of the metaMA package to combine data from mul-
tiple microarray experiments. Based on real publicly available data, it also explains the
way to format them and draw conclusions thanks to annotation data. Since the use of
GEOquery might take time, the command lines are not anymore evaluated during the
building of the package. Please do not hesitate to contact the maintainer of the package
(guillemette.marot@inria.fr) if you see a mistake.

Contents
1 Introduction 1

2 Download public data with GEOquery 2

3 Conditions 3

4 Convert esets to an Unigene format 3

5 metaMA Application 5

6 Venn Diagram 5

7 Annotations 5

8 Session Info 7

1 Introduction
Microarray experiments have been widely used to study differential gene expression between
normal and tumoral tissues or other experimental conditions. Very often, the number of repli-

1

cates is small due either to the cost of the experiment or the lack of biological replicates
available. Meta-analyses have increased sensitivity by combining different studies but it is
expected that even more sensitivity can be obtained using shrinkage approaches when the
number of samples is small in each individual study. metaMA proposes a method to calculate
moderated effect sizes or p-values from standard and moderated t-tests. The p-values are ob-
tained from limma, SMVar or t-test procedures. metaMA’s methods can be applied on different
datasets such as those found in public microarray databases.
pvalcombination(esets, classes)method combines p-values from different datasets
(esets) to extract differentially expressed genes between two conditions (e.g. healthy, ill)
coded by 0 or 1 for each biological sample in (classes). esets a is list of matrices which
contains genes expression, with one matrix for each study. Sections 2 and 4 concern its build-
ing. classes is a list of vectors. Each vector codes by 0 samples in the first condition, and
by 1 samples in the second condition. Section 3 gives an example.

2 Download public data with GEOquery
metaMA requires normalized micro-array data. In this section, GEOquery [1] is used to get
some public data from head and neck cancers (might take time).

> library(GEOquery)

> data1 = getGEO('GSE9844')
> data2 = getGEO('GSE3524')
> data3 = getGEO('GSE13601')

Note: Before using GEOquery on a Linux machine, make sure XML and Curl are up-to-date.
Use the following command before starting R : sudo apt-get install r-base-core
libxml2-dev libcurl4-openssl-dev curl
GEOquery gives ExpressionSetwhich might be already normalized. Boxplots show their
distributions.

> par(mfrow=c(2,2))
> boxplot(data.frame(exprs(data1[[1]])),main="data1",outline=FALSE)
> boxplot(data.frame(exprs(data2[[1]])),main="data2",outline=FALSE)
> boxplot(data.frame(exprs(data3[[1]])),main="data3",outline=FALSE)

While data1 and data2 look like normalized data, data3 presents large ranges of values,
which might not be normalized. Since the present vignette does not aim at discussing the
choice of the normalization method, we simply log2-transform raw intensities values. The
reader is however invited to take special care of normalization on his own data and if possible,
to use the same normalization strategy for each study.

> exprs(data3[[1]])<-log2(exprs(data3[[1]]))
> boxplot(data.frame(exprs(data3[[1]])),main="data3",outline=FALSE)

2

3 Conditions
metaMA compares genes expressions between 2 conditions (e.g. healthy vs ill). This step
explains how to build the classes list to determine which replicate is in each condition
(here tumor is coded by 1, control by 0).

> c1=as.numeric(pData(data1[[1]])["source_name_ch1"]==
+ "Oral Tongue Squamous Cell Carcinoma")
> c2=as.numeric(apply(pData(data2[[1]])["description"],
+ 1,toupper)=="SERIES OF 16 TUMORS")
> c3=as.numeric(pData(data3[[1]])["source_name_ch1"]=="Tumor")
> classes=list(c1,c2,c3)

In public data, like in our example, information about diseases can be found in pData.
Otherwise, theses classes can be built manually. For example, with 2 arbitrary studies :

> c1=c(1,0,1,1,0,1,0,0,0,1)
> c2=c(1,1,1,0,0,0)
> classes2=list(c1,c2)

4 Convert esets to an Unigene format
The probes of these 3 datasets are not the sames, but they have genes in common. The
following functions link probes Entrez Gene ID and UNIGENE identifiers to intersect
all common genes. The function probe2unigene returns all UNIGENE identifiers from
probes available in microarrays. The function unigene2probe gives the correspondance
back from a UNIGENE to Entrez Gene ID. To run this example, it is necessary to load
the Bioconductor package org.Hs.eg.db. If not installed, the two following commands can be
used to install it (delete the comment sign before):

> #source("http://bioconductor.org/biocLite.R")
> #biocLite("org.Hs.eg.db")

> require("org.Hs.eg.db")
> x <- org.Hs.egUNIGENE
> mapped_genes <- mappedkeys(x)
> link <- as.list(x[mapped_genes])

> probe2unigene<-function(expset)
+ {
+ #construction of the map probe->unigene
+ probes=rownames(exprs(expset))
+ gene_id=fData(expset)[probes,"ENTREZ_GENE_ID"]

3

+ unigene=link[gene_id]
+ names(unigene)<-probes
+ probe_unigene=unigene
+ }

> unigene2probe<-function(map)
+ {
+ suppressWarnings(x <- cbind(unlist(map), names(map)))
+ unigene_probe=split(x[,2], x[,1])
+ }

Note that probes which can not be linked to a UNIGENE identifier will not be taken into
account in the meta-analysis. Because one unigene corresponds to many probes, it is nec-
essary to choose a strategy to merge such probes from a single study. In the following,
convert2metaMA chooses to summarize values of probes corresponding to the same UNI-
GENE by their mean, as attested by the default value given to the argument mergemeth.

> convert2metaMA<-function(listStudies,mergemeth=mean)
+ {
+ if (!(class(listStudies) %in% c("list"))) {
+ stop("listStudies must be a list")
+ }
+ conv_unigene=lapply(listStudies,
+ FUN=function(x) unigene2probe(probe2unigene(x)))
+ id=lapply(conv_unigene,names)
+
+ inter=Reduce(intersect,id)
+ if(length(inter)<=0){stop("no common genes")}
+ print(paste(length(inter),"genes in common"))
+ esets=lapply(1:length(listStudies),FUN=function(i){
+ l=lapply(conv_unigene[[i]][inter],
+ FUN=function(x) exprs(listStudies[[i]])[x,,drop=TRUE])
+ esetsgr=t(sapply(l,FUN=function(ll) if(is.null(dim(ll))){ll}
+ else{apply(ll,2,mergemeth)}))
+ esetsgr
+ })
+ return(list(esets=esets,conv.unigene=conv_unigene))
+ }
> conv=convert2metaMA(list(data1[[1]],data2[[1]],data3[[1]]))
> esets=conv$esets
> conv_unigene=conv$conv.unigene

The function convert2metaMA builds matrices for each study containing only rows cor-
responding to the identifiers common to all studies (based on the conversion via UNIGENE).

4

These matrices are stored in the sublist esets of the value returned by the function. In
this example, the intersection of the 3 studies includes 4853 genes. convert2metaMA also
returns conv.unigene to be able to go back to original probe names after meta-analysis.

5 metaMA Application
> library(metaMA)
> res=pvalcombination(esets=esets,classes=classes)
> length(res$Meta)
> Hs.Meta=rownames(esets[[1]])[res$Meta]

The p-value combination gives different indicators to evaluate the performance of the meta-
analysis. DE corresponds to the number of differentially expressed genes. IDD (Integration
Driven discoveries) returns the number of genes that are declared DE in the meta-analysis that
were not identified in any of the individual studies alone, Loss the number of genes that are
identified DE in individual studies but not in meta-analysis. The Integration-driven Discovery
Rate (IDR) and Integration-driven Revision Rate (IRR) are the corresponding proportions of
IDD and Loss.

6 Venn Diagram
To compare visually the number of differentially expressed genes in individual studies or in
meta-analysis, it is possible to draw a Venn diagram, for example with the VennDiagram
package.

> library(VennDiagram)
> venn.plot<-venn.diagram(x = list(study1=res$study1,
+ study2=res$study2,
+ study3=res$study3,
+ meta=res$Meta),
+ filename = NULL, col = "black",
+ fill = c("blue", "red", "purple","green"),
+ margin=0.05, alpha = 0.6)
> jpeg("venn_jpeg.jpg")
> grid.draw(venn.plot)
> dev.off()

7 Annotations
To obtain annotations related to initial probes, it is necessary to know the chip types used in
each study. It is preferable to know them in advance (to save time) but it is also possible to get
it with the following getanndb function.

5

> getanndb<-function(expset)
+ {
+ gpl_name=annotation(expset)
+ gpl=getGEO(gpl_name)
+ title=Meta(gpl)$title
+ db=paste(gsub("[-|_]","",
+ tolower(strsplit(title,"[[]|[]]")
+ [[1]][[2]])),"db",sep=".")
+ return(db)
+ }
> db1=getanndb(data1[[1]])
> db1
> db2=getanndb(data2[[1]])
> db2
> db3=getanndb(data3[[1]])
> db3

It is then necessary to download annotation packages corresponding to these chip types
(use biocLite to install them if necessary).

> #source("http://bioconductor.org/biocLite.R")
> #biocLite(db1)
> #biocLite(db2)
> #biocLite(db3)
> library(db1,character.only=TRUE)
> library(db2,character.only=TRUE)
> library(db3,character.only=TRUE)

In the following code, origId.Meta gives back for each study the original ids cor-
responding to the common Hs.Meta ids of the differentially expressed genes in the meta-
analysis. Since several original probes matched the same UNIGENE identifiers, there might
be many more ids in origId.Meta than in Hs.Meta. Then, functions aafTableAnn and
saveHTML from the package annaffy are used to save in the current directory an HTML
file "annotation.html", which provides biological information about identified probes.

> origId.Meta=lapply(conv_unigene,
+ FUN=function(vec) as.vector(unlist(vec[Hs.Meta])))
> library(annaffy)
> annlist=lapply(1:length(origId.Meta),
+ FUN=function(i) aafTableAnn(origId.Meta[[i]],chip=get(paste0("db",i)),colnames=aaf.handler()))
> annot=do.call(rbind,annlist)
> saveHTML(annot,file="annotation.html",title="Responder genes")

6

8 Session Info
> sessionInfo()

R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.1 LTS

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats graphics grDevices utils datasets
[6] methods base

loaded via a namespace (and not attached):
[1] compiler_4.4.1 tools_4.4.1 maketools_1.3.1
[4] buildtools_1.0.0 knitr_1.48 xfun_0.48
[7] sys_3.4.3

References
[1] S. Davis and P. Meltzer. Geoquery: a bridge between the gene expression omnibus (geo)

and bioconductor. Bioinformatics, 14:1846–1847, 2007.

7

	Introduction
	Download public data with GEOquery
	Conditions
	Convert esets to an Unigene format
	metaMA Application
	Venn Diagram
	Annotations
	Session Info

